Reg. No. :

Question Paper Code : 91405

B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DECEMBER 2014.

Fifth Semester

Electronics and Communication Engineering

EC 2301/EC 51 -- DIGITAL COMMUNICATION

(Regulation 2008)

(Common to PTEC 2301 – Digital Communication for B.E. (Part-Time) Fourth Semester – Electronics and Communication Engineering – Regulation 2009)

Time : Three hours

Maximum : 100 marks

Answer ALL questions.

PART A — $(10 \times 2 = 20 \text{ marks})$

- 1. Mention the application of pulse communication systems.
- 2. Define channel capacity.
- 3. What is difference between natural and flat top sampling?
- 4. What is temporal waveform coding?
- 5. What is Manchester coding? What are its advantages?
- 6. What is the need for error control codes?
- 7. What is the function of an equalizing filter?
- 8. What is inter symbol interference?
- 9. Draw constellation diagram of QAM.
- 10. Mention the advantages of PSK systems.

PART B — (5 × 16 = 80 marks)

digital a digital (10)	Discuss the advantages and disadvantages of communication and give a functional description of a communication system.	ı) (i)	(a)	11.
(6)	Explain how channels can be classified. Or	(ii)		
(8)	Explain geometric representation of signals.	o) (i)	(b)	
unication (8)	Describe the different mathematical models of a commuchannel.	(ii)		
ge can be (10)	Explain Nyquist sampling theorem and how the message reconstructed from its samples with an example.	a) (i)	(a)	12.
action. (6)	Explain the practical limitations in sampling and reconstru	(ii)		
	Or			
on for the er. (8)	Explain the principle of quantization and obtain the expression signal to quantization noise for the case of a uniform quantized	o) (i)	(b)	
(8)	Explain the spectral waveform encoding methods.	(ii)		
codes can (10)	Explain the generation of (n,k) block codes and how block c be used for error control.	a) (i)	(a)	13.
e helps in (6)	Consider a (6,3) block code and explain how error syndrome correcting a single error for a data 110.	(ii)		
	/ Or			
example. ntation of (16)	scribe how convolutional codes can be generated with an aw and explain the tree diagram and trellis diagram represen volutional codes.	b) Des Dra conv	(b)	
lator type (8)	Describe the principle of signal reception using a correla receiver.	a) (i)	(a)	14.
(8)	Explain the important properties of a matched filter. Or	(ii)		
used for (8)	Describe how eye pattern can be obtained and can be observing the characteristics of a communication channel.	b) (i)	(b)	
(8)	Explain the function of maximum likelihood detector.	(ii)		
gram the (10)	Explain QPSK modulation. Describe with a block diag operation of a QPSK Transmitter.	a) (i)	(a)	15.
(6)	Explain the bandwidth considerations of QPSK. Or	(ii)		
(10)	Describe noncoherent and coherent FSK demodulation.	b) (i)	(h)	
(6)	Obtain the probability of error of a FSK system.	(ii)	(~)	
(0)	Obtain the probability of error of a ror system.	(11)		